Unit Review

What Do I Need to Know?

Side Length and Area of a Square

The side length of a square is equal to the square root of its area. Length = $\sqrt{\text{Area}}$ Area = (Length)²

Interprovimate Square Root of a Number

For numbers that are not perfect squares, we can determine the approximate square root using estimation or a calculator.

The Pythagorean Theorem

In a right triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the two legs. $h^2 = a^2 + b^2$

Use the Pythagorean Theorem to find the length of a side in a right triangle, when two other sides are known.

What Should I Be Able to Do?

LESSON

1.1

- Use square tiles. Make as many different rectangles as you can with area 24 square units. Draw your rectangles on grid paper. Is 24 a perfect square? Justify your answer.
- 2. Which of these numbers is a perfect square? Use a diagram to support your answer.
 a) 18 b) 25 c) 44 d) 80

LESS	SON		
З.	I am a square number.		
	The sum of my digits is 7.		
	What square number might I be?		
	How many different numbers can you		
	G. 12		
	find:		
1.2			
4.	Find the square of each number.		
	a) 5 b) 7 c) 9 d) 13		
5.	Find a square root.		
	a) 7^2 b) $\sqrt{289}$ c) $\sqrt{400}$		
6.	a) List the factors of each number		
	in ascending order.		
	i) 108 ii) 361 iii) 150		
	iy 286 $y 324$ $yi) 56$		
	h) Which numbers in part a are square		
	b) which humbers in part a are square		
	numbers? How can you tell?		
_			
7.	The area of a square is 121 cm ² .		
	What is the perimeter of the square?		
	How did you find out?		
1.3			
8.	Copy this		
	square onto		
	grid paper.		
	Find its area.		
	Then write the		
	side length		
	of the square.		
9.	The area of each square is given.		
	Find its side length.		
	Which side lengths are whole numbers?		
	a) 75 cm ² b) 96 cm ² c) 81 cm ²		

10. Without measuring, which line segment is longer? How can you tell?

- **11.** Find.
 - a) $\sqrt{26 \times 26}$
 - b) $\sqrt{5 \times 5}$
 - c) $\sqrt{50 \times 50}$
 - d) $\sqrt{13 \times 13}$
- **12.** Between which two consecutive whole numbers is each square root? How did you find out?

a) $\sqrt{46}$	b) $\sqrt{84}$
c) $\sqrt{120}$	d) √1200

1.4

- **13.** Without using a calculator, estimate each square root to the nearest whole number.
 - **a)** $\sqrt{6}$ **b)** $\sqrt{11}$
 - **c)** $\sqrt{26}$ **d)** $\sqrt{35}$
 - **e)** $\sqrt{66}$ **f)** $\sqrt{86}$
- **14.** Estimate each square root to one decimal place. Show your work.

a) √55	b) $\sqrt{75}$
c) √95	d) $\sqrt{105}$
e) $\sqrt{46}$	f) $\sqrt{114}$

- **15.** Which is the better estimate of $\sqrt{72}$: 8.48 or 8.49? How do you know?
- 16. This First Nations quilt is a square, with area 16 900 cm². How long is each side of the quilt?

- **17.** Is each statement true or false? Justify your answers.
 - a) $\sqrt{2} + \sqrt{2} = 2$
 - **b)** $\sqrt{29}$ is between 5 and 6.

c)
$$\sqrt{9} + \sqrt{25} = \sqrt{64}$$

- 1.5
- **18.** Find the length of each side labelled with a variable. Give your answers to one decimal place where needed.

c)

19. Find the length of the diagonal, *d*, in each rectangle. Give your answers to one decimal place where needed.

20. The area of the square on each side of a triangle is given.Is the triangle a right triangle? How do you know?

1.6

21. A triangle has side lengths 7 cm, 12 cm, and 15 cm.Is the triangle a right triangle?Justify your answer.

Unit Review

What Do I Need to Know?

Multiplying Integers

The product of two integers with the same sign is a positive integer. $(+6) \times (+4) = +24$; $(-18) \times (-3) = +54$

The product of two integers with different signs is a negative integer. $(-8) \times (+5) = -40; (+9) \times (-6) = -54$

The sign of a product with an even number of negative factors is positive. (-2) × (-2) × (-2) × (-2) = +16

The sign of a product with an odd number of negative factors is negative. $(-2) \times (-2) \times (-2) \times (-2) \times (-2) = -32$

Dividing Integers

The quotient of two integers with the same sign is a positive integer. (+56) \div (+8) $=\frac{+56}{+8}$ = +7; (-24) \div (-6) $=\frac{-24}{-6}$ = +4

The quotient of two integers with different signs is a negative integer. (-30) \div (+6) $= \frac{-30}{+6} = -5$; (+56) \div (-7) $= \frac{+56}{-7} = -8$

Order of Operations

- Do the operations in brackets first.
- Multiply and divide, in order, from left to right.
- Add and subtract, in order, from left to right.

When the expression is written as a fraction:

- Evaluate the numerator and denominator separately.
- Then divide the numerator by the denominator.

What Should I Be Able to Do?

LESSON

2.1

1. Write each multiplication as a repeated addition. Then use coloured tiles to find each sum.

a) $(+2) \times (-1)$ b) $(+2) \times (+9)$ c) $(+3) \times (-3)$ d) $(+3) \times (+7)$

- 2. Use a model to find each product.
 a) (-7) × (-5) b) (+10) × (-6)
 c) (-4) × (+4) d) (+6) × (+8)
- 3. The temperature change in a chemistry experiment was -2°C every 30 min. The initial temperature was 6°C. What was the temperature after 4 h?
- 4. Will each product be positive or negative? How do you know?
 a) (+25) × (-31) b) (-13) × (-15)
 c) (-11) × (+12) d) (+9) × (+13)

2.2

- 5. Find each product.
 a) (+9) × (-7)
 b) (+4) × (+7)
 c) (-11) × (+13)
 d) (-40) × (-22)
 e) (-1) × (+17)
 f) (-37) × 0
- **6.** Copy each equation. Replace with an integer to make the equation true.

a)
$$(-12) \times \square = +72$$

b)
$$\square \times (+8) = +80$$

c)
$$(+7) \times \square = 0$$

d) $\Box \times (-4) = -60$

- An old bucket has a small leak.
 Fifty-five millilitres of water leak out in 1 h. Use integers to find how much water leaks out in 6 h.
- 8. Write a word problem that could be solved using the expression (+5) × (-7). Solve the problem.
- 2.3
- **9.** Use coloured tiles. Find each quotient. Sketch the tiles you used.
 - a) $(+15) \div (+3)$ b) $(+36) \div (-9)$
 - c) $(-21) \div (+7)$ d) $(-27) \div (-3)$
- 10. Use a model to find each quotient.
 a) (+18) ÷ (-3) b) (+14) ÷ (+2)
 c) (-28) ÷ (+4) d) (-30) ÷ (-6)
- **11.** Tyler decides that, starting this week, he will withdraw \$5 from his savings account each week.
 - a) How many weeks from now will Tyler have withdrawn \$65?
 - **b)** Explain how you can use integers to model this situation.
 - c) What assumptions do you make?

2.4

- **12.** Will each quotient be positive or negative? How do you know?
 - **a)** (+26) ÷ (−2) **b)** (−32) ÷ (−8)
 - c) $(-1) \div (+1)$ d) $(+42) \div (+7)$

- **21.** Evaluate.
 - a) $(-8) \div (-4) + 6(-3)$ b) $(-5) + (-12) \div (-3)$ c) $18 + 3[10 \div (-5)]$ d) $(-16) \div 8[7 - (-2)]$
- **22.** Evaluate. Show all steps. **a)** $\frac{3(-6) - 3}{-7}$ **b)** $\frac{(-4) + [(-7) - (-2)]}{3}$ **c)** $\frac{20}{(-3) + (-14) \div 7}$
- **23.** Evaluate. Show all steps. a) $\frac{[18 - (-4)] \div (-11)}{(-4) + 2}$ b) $\frac{5(-2) + (-12) \div 3}{28 \div (-4)}$ c) $\frac{(-8) (-3)}{(-16) \div [(-13) - (-9)]}$
- **24.** In a darts game, Suzanne and Corey each threw the darts 10 times. Corey had three (+2) scores, three (-3) scores,

and four (+1) scores. Suzanne had four (+2) scores, four (-3) scores, and two (+1) scores.

- a) What was each person's final score? How did you decide which operations to use?
- b) The winner had the greater score.Who won the game? Explain.

Unit Review

What Do I Need to Know?

To multiply two fractions: Multiply the numerators and multiply the denominators.

 $\frac{2}{3} \times \frac{1}{5} = \frac{2 \times 1}{3 \times 5} = \frac{2}{15}$

To multiply two mixed numbers:

Write each number as an improper fraction, then multiply.

$$1\frac{1}{2} \times 2\frac{5}{6} = \frac{\sqrt[1]{3}}{2} \times \frac{17}{\sqrt[1]{6}_2}$$
$$= \frac{17}{4}, \text{ or } 4\frac{1}{4}$$

Simplify first, when you can.

V To divide two fractions:

Method 1:

Use common denominators. $\frac{4}{5} \div \frac{3}{2} = \frac{8}{10} \div \frac{15}{10} = \frac{8}{15}$ Method 2: Use multiplication. $\frac{4}{5} \div \frac{3}{2}$ is the same as $\frac{4}{5} \times \frac{2}{3} = \frac{8}{15}$

To divide two mixed numbers:

Write each number as an improper fraction, then divide.

$$3\frac{1}{2} \div 1\frac{2}{3} = \frac{7}{2} \div \frac{5}{3}$$
$$= \frac{7}{2} \times \frac{3}{5}$$
$$= \frac{21}{10}, \text{ or } 2\frac{1}{10}$$

V To identify the operation:

- Think about the situation.
- Make sense of the problem.
- Think about what is happening in the problem. Use key words to help.

The order of operations with whole numbers and decimals applies to fractions.

- Do the operations in brackets first.
- Then divide and multiply, in order, from left to right.
- Then add and subtract, in order, from left to right.

What Should I Be Able to Do?

LESSON

3.1

1. Write the multiplication equation each number line represents.

2. Multiply. Draw a picture or a number line to show each product.

a) $\frac{1}{3} \times 3$ b) $7 \times \frac{1}{2}$ c) $8 \times \frac{2}{5}$

- **3.** Solve each problem.
 - a) There are 30 students in a class. Three-fifths of the students are girls. How many girls are in the class?
 - **b)** Six glasses are $\frac{2}{3}$ full. How many full glasses could be made?
 - c) There are 75 cars in the parking lot of a car dealership. Two-thirds of the cars are new. How many of the cars are new?
 - d) One serving is $\frac{1}{12}$ of a cake. How many cakes are needed for 18 servings?

3.2

4. Draw an area model to find each product.

a)
$$\frac{2}{3} \times \frac{3}{8}$$

b) $\frac{4}{5} \times \frac{3}{10}$
c) $\frac{7}{10} \times \frac{3}{4}$
d) $\frac{3}{7} \times \frac{1}{3}$

- **5.** Fasil donated $\frac{3}{5}$ of $\frac{1}{4}$ of his allowance to a charity. What fraction of his allowance did Fasil donate?
- **6.** Multiply. Use benchmarks to estimate to check each product is reasonable.

a)	$\frac{1}{2} \times \frac{3}{10}$	b) $\frac{3}{5} \times \frac{1}{8}$
c)	$\frac{7}{8} \times \frac{2}{5}$	d) $\frac{3}{11} \times \frac{44}{63}$

- 7. Twenty Grade 8 students are going on a school trip. They pre-order sandwiches. Three-quarters of the students order a turkey sandwich, while $\frac{1}{4}$ of the students order a roasted vegetable sandwich. Of the $\frac{3}{4}$ who want turkey, $\frac{2}{5}$ do not want mayonnaise. What fraction of the students do not want mayonnaise?
- 8. Write a story problem that could be solved using the expression ⁵/₇ × ³/₈. Find the product to solve the problem. Estimate to check the solution is reasonable.

3.4

3.3

9. Write each mixed number as an improper fraction.

a) $7\frac{1}{2}$ b) $2\frac{7}{8}$ c) $10\frac{7}{10}$

10. Use an area model to find each product.

a)
$$1\frac{1}{2} \times 2\frac{1}{3}$$
 b) $\frac{19}{3} \times \frac{6}{5}$
c) $3\frac{1}{5} \times \frac{1}{4}$ d) $2\frac{1}{4} \times 3\frac{1}{3}$

- **11.** Multiply. Estimate to check the product is reasonable.
 - a) $1\frac{2}{3} \times 1\frac{9}{10}$
 - **b)** $4\frac{1}{2} \times \frac{5}{8}$
 - c) $\frac{9}{5} \times \frac{14}{8}$
 - **d)** $1\frac{3}{10} \times 6\frac{2}{3}$
- **12.** Jonathan works for a landscape maintenance company. It took Jonathan $1\frac{3}{4}$ h to mow Mr. Persaud's lawn. The lawn he will mow next is $2\frac{1}{3}$ times as large as Mr. Persaud's lawn. How long will it take Jonathan to mow the next lawn? What assumptions do you make?
- 3.513. Find each quotient. Use number lines to illustrate the answers.
 - a) One-half of a cake is shared equally among 5 people. What fraction of the whole cake does each person get?
 - b) Nakkita's dog eats ³/₄ of a can of dog food each day. Nakkita has 9 cans of dog food. How many days' supply of dog food does Nakkita have?
- **14.** Find each quotient.
 - a) $3 \div \frac{4}{5}$ b) $4 \div \frac{5}{6}$
 - c) $\frac{3}{10} \div 2$
 - **d)** $2\frac{5}{8} \div 3$
- **15.** A glass holds $\frac{3}{4}$ cup of milk. A jug contains 12 cups of milk. How many glasses can be filled from the milk in the jug?

- **16.** Kayla uses $\frac{2}{3}$ of a scoop of detergent to do one load of laundry. Kayla has 9 scoops of detergent. How many loads of laundry can Kayla do?
- **17.** When you divide a fraction by a whole number, is the quotient greater than or less than 1? Include examples in your explanation.

3.6

18. Use a copy of each number line to illustrate each quotient.

- **19.** Divide. Estimate to check each quotient is reasonable.
 - a) $\frac{3}{4} \div \frac{3}{8}$ b) $\frac{1}{4} \div \frac{7}{8}$ c) $\frac{5}{12} \div \frac{1}{3}$ d) $\frac{1}{2} \div \frac{3}{5}$
- **20.** Midori lives on a farm. Midori has $\frac{7}{8}$ of a tank of gas. Each trip to town and back uses $\frac{1}{6}$ of a tank of gas. How many trips to town and back can Midori make until she needs more gas? Estimate to check the solution is reasonable.
- 21. When you divide a proper fraction by its reciprocal, is the quotient less than 1, greater than 1, or equal to 1? Use examples in your explanation.

22. Write each mixed number as an improper fraction.

a)	$3\frac{7}{11}$	b)	$5\frac{1}{6}$
c)	$4\frac{8}{9}$	d)	$2\frac{5}{12}$

- **23.** Divide. Estimate to check the quotient is reasonable.
 - a) $1\frac{3}{4} \div 2\frac{1}{8}$
 - **b)** $3\frac{5}{6} \div 2\frac{1}{5}$
 - c) $3\frac{1}{2} \div 1\frac{3}{8}$
 - d) $2\frac{1}{5} \div 4\frac{2}{5}$
- **24.** A recipe for cereal squares calls for $1\frac{1}{4}$ bags of regular marshmallows. The recipe makes a cookie sheet of squares. Marcus has $\frac{3}{4}$ of a bag of marshmallows. He buys 5 more bags. How many sheets of cereal squares can Marcus make?

3.8

- **25.** A cookie recipe calls for $\frac{3}{4}$ cup of rolled oats. Norma has $\frac{5}{8}$ cup of rolled oats. How much more rolled oats does she need to make the cookies? How did you decide which operation to use?
- **26.** In a lottery for a local charity, 1000 tickets are sold. Of these tickets, $\frac{1}{1000}$ will win \$1000, $\frac{1}{500}$ will win \$50, $\frac{1}{200}$ will win \$25, $\frac{1}{100}$ will win \$10, and $\frac{1}{10}$ will win \$5. How many tickets will not win a prize? How did you decide which operations to use?

- **27.** There are 30 students in a Grade 8 class. One-third of the students take a school bus, $\frac{1}{5}$ take public transportation, $\frac{1}{6}$ are driven by family, and the rest walk to school.
 - a) What fraction of the students in the class walk to school?
 - b) How many of the students in the class walk to school? How did you decide which operations to use?

3.9

28. Evaluate. State which operation you do first.

a) $\frac{1}{5} + \frac{2}{3} \times \frac{3}{5}$	b) $\frac{4}{5} \div (\frac{2}{3} - \frac{3}{10})$
c) $\frac{7}{3} + \frac{1}{6} \times \frac{2}{5}$	d) $\frac{7}{8} \div \frac{5}{6} \times \frac{4}{7}$

- **29.** Evaluate.
 - a) $\frac{2}{3} + \frac{1}{4} \frac{1}{6}$ b) $\frac{3}{2} \times (\frac{4}{3} \frac{1}{6})$ c) $\frac{9}{8} \div (\frac{3}{4} + \frac{3}{2})$ d) $\frac{2}{3} \times (\frac{1}{8} + \frac{5}{6} - \frac{3}{4})$
- **30.** Carlton evaluated this expression: $2\frac{4}{5} \div \left(\frac{2}{3} + \frac{1}{12}\right)$ His work is shown below. Where did Carlton go wrong? What is the correct answer? $2\frac{4}{5} \div \left(\frac{2}{3} + \frac{1}{12}\right) = 2\frac{4}{5} \div \left(\frac{8}{12} + \frac{1}{12}\right)$ $= 2\frac{4}{5} \div \left(\frac{9}{12}\right)$ $= \frac{14}{5} \div \frac{9}{12}$ $= \frac{14}{5} \times \frac{9}{12}$ $= \frac{14}{5} \times \frac{9}{12}_{s^2}$ $= \frac{21}{10}$ $= 2\frac{1}{10}$