- b) "In the summer, people like to swim to cool down. What is your favourite summer activity?"
- **2.a)** The data show the average weekly earnings in 2001, for various jobs.
 - c) For example: A bar graph is easy to read, and we can compare earnings for different jobs. A circle graph could not be used because we're not looking at percents or parts of a whole. A line graph could not be used because the data are not measured over time.
 - **d)** Mining; Health Care; these jobs are represented by the tallest and shortest bars.
 - e) For example: Multiply the data by 52 to get average annual earnings. Then, divide the average annual earnings by 12 to get average monthly earnings.
 - f) For example: Mean.
- **3.a)** 17; 10; 9; 4; 20 **b)** 60
 - c) Metro PD, because it is the least favourite.
- **d)** Reality Shock, because it has the most viewers.
- **4.b)** For example: The median and the mode. The boxes with the greatest and least mass, and the range of the data.
 - **c)** For example: No, the shipment will not be approved if the mean is used, since the mean mass of a box of raisins is less than 100 g.
 - **d)** 99.9 g **e)** 100.3 g
 - f) Yes; the mode is higher than 100 g.No; the median is less than 100 g.
- 5.b) For example: Calgary: Upward trend from February to June, downward trend from June to November. Charlottetown: Downward trend from January to April, and from May to July; upward trend from July to November.
 - **c)** No. Charlottetown gets more rain than Calgary year round; the 2 cities never get the same amount of rain in a given month.
 - d) Calgary: 40 cm; Charlottetown: 106 cm
 - e) Calgary: 2.05 cm; Charlottetown: 8.6 cm
 - f) For example: Charlottetown gets the most rain in November and the least rain in July. Calgary gets the most rain in June and the least rain in February.
- **6.a)** Mode; the storeowner needs to know which size sweater sells the most.
 - b) Mean; this is the highest of the 3 values, and will get Robbie the most money.
 - **c)** Median; if Tina's score is greater than the median, she is in the top half of her class.
- **7.a)** Mean

b) Mode

Unit 5 Practice Test, page 211

- **1.a)** For example: Primary data are data I collect. Secondary data come from another source.
 - b) i) Secondary data ii) Primary data
- **2.b)** 1:30, or 90 s **c)** 2:54.5, or 2 min 54.5 s
 - **d)** Yes; 2:39, 2:47, 3:07, 3:11, 3:25
- **3.a)** 94 **b)** 86 **c)** 85
- **4.a)** For example: I used a bar graph because the data are not measured over time.
 - **b)** For example: The scale would change to allow for the greater number. Another bar would be added to the graph.
 - **d)** For example: The graph from part a, because it is easier to read.

Unit 6 Measuring Perimeter and Area, page 214

Skills You'll Need, page 216

- **1.a)** $P = 30 \text{ cm}, A = 36 \text{ cm}^2$
 - **b)** $P = 26 \text{ m}, A = 40 \text{ m}^2$
 - c) $P = 18 \text{ cm}, A = 20.25 \text{ cm}^2$
 - **d)** $P = 8.4 \text{ cm}, A = 3.6 \text{ cm}^2$

6.1 Area of a Parallelogram, page 219

- **1.a)** b = 12 cm, h = 4 cm **b)** b = 10 cm, h = 12 cm
- c) b = 8.0 cm, h = 4.4 cm d) b = 4.0 cm, h = 8.8 cm
- **2.a)** 48 cm^2 **b)** 120 cm^2 **c)** 35.2 cm^2 **d)** 35.2 cm^2
- **3.b)** i) 15 cm² ii) 24.5 cm²
 The areas are the same, but the parallelograms have different shapes.
- **5.a)** 24 cm² **b)** 12 cm **c)** 8 cm
 - d) For example: 1 cm by 48 cm, 2 cm by 24 cm, 3 cm by 16 cm, 4 cm by 12 cm, 6 cm by 8 cm, 8 cm by 6 cm, 12 cm by 4 cm, 16 cm by 3 cm, 24 cm by 2 cm, 48 cm by 1 cm
- **6.a)** 5 cm **b)** 14 cm **c)** 7 cm
- 7.a) For example: 8b) For example: 12c) For example: 4
- **8.** No. For example: The area of A is equal to the area of B.
- **9.a)** The two triangles are congruent.
 - **b)** 60 cm^2
 - **c)** 30 cm²; the area of each triangle is one-half the area of the parallelogram.
- **10.a)** 95.04 m² **b)** 132 m²
 - c) For example: Subtract the area of the patio from the sum of the areas of the patio and gardens.
 Area of the gardens = 36.96 m²

6.2 Area of a Triangle, page 222

- **1.a)** b = 7 m, h = 3 m **b)** b = 3 cm, h = 5 cm
- **c)** b = 6 m, h = 8 m **d)** b = 4 cm, h = 7 cm
- **2.a)** 10.5 m² **b)** 7.5 cm² **c)** 24 m² **d)** 14 cm²
- **3.b)** i) 6 cm^2 ii) 24.375 cm²

The areas are the same for the 3 different triangles in parts i and ii.

- 5.b) i) For example: By doubling the height or the base, the area of the triangle doubles.
 - **ii)** For example: By halving the height or the base, the area of the triangle is halved.
- **6.b)** 12 cm^2

For example: All the triangles have different side lengths.

7.a) 10 cm	b) 8 cm	c) 3 cm
-------------------	----------------	----------------

8. For example: I double the area, then divide by the base.

9.a)	8.55 m ²	b)	2 cans
10.a)	92.98 m ²	b)	33 sheets; \$823.35

Unit 6 Mid-Unit Review, page 225

- **1.a)** $P = 15 \text{ m}, A = 12.5 \text{ m}^2$ **b)** $P = 13.6 \text{ m}, A = 11.56 \text{ m}^2$
- **2.a)** 7 cm^2 **b)** 9.2 cm^2 **c)** 3 cm^2
- **3.a)** 2700 cm² **b)** For example: b = 60 cm, h = 90 cm
- **c)** For example: b = 30 cm, h = 45 cm
- **4.a)** 12 cm^2 **b)** 3.5 cm^2 **c)** 2.2 m^2
- **5.** \$1265.63, or \$1375 if the contractor rounds to the next square metre of concrete.

6.3 Area and Perimeter of a Trapezoid, page 228

1.a)	15 cm^2	b) 12 ci	m^2 c)	16 cm^2
2.a)	65 cm^2		b) 38 cm^2	
3.a)	5 cm^2		b) <i>A</i> ≐ 58.	6 cm^2
4.a)	$A = 156 \text{ cm}^2$, A	P = 54 cm	n b) A = 816	5 m^2 , $P = 124 \text{ m}$

- **5.a) i)** 33.6 cm^2 **ii)** 66 m^2
 - b) i) No; there is not enough information.ii) Yes; P = 36 m
- **6.a)** Flowers: $A = 5.2 \text{ m}^2$; vegetables: $A = 3.965 \text{ m}^2$; herbs: $A = 2.535 \text{ m}^2$
 - **b)** $A = 11.7 \text{ m}^2$; find the sum of the three areas in part a, or find the area of the rectangle.
- **8.a)** For example: Divide the area of the parallelogram by 2 to find the area of each trapezoid.
- **9.a)** 510 cm^2 **d)** Larger
- **10.** For example:

Area of a trapezoid = $\frac{1}{2}$ (base 1 + base 2) × h

6.4 Measuring Irregular Figures, page 236

1. 24 m² **2.a)** 31 m² **b)** 27 m²

- **3.a)** Answers vary. **b)** $A = 42.56 \text{ m}^2, P = 37.6 \text{ m}$
- **4.b)** $A = 2200 \text{ m}^2, P = 220 \text{ m}$
 - c) For example: Count the squares on the grid and multiply by 100 to get the area; count the sides of the squares and multiply by 10 to get the perimeter.
- **5.b)** 135 m²
 - **c)** No. For example: The areas of the garden and the backyard never change, so you are always subtracting the same numbers.
- **6.b)** All the perimeters are the same; P = 26 m
 - c) For example: You cannot make an L-shaped pool with area 30 m² and arm width 5 m. You end up with a rectangle.

Unit 6 Unit Review, page 240

- **1.a)** 6.8 cm^2 **b)** 2.94 cm^2 **c)** 3.125 cm^2 **d)** 5.98 cm^2
- **2.a)** 186 cm^2 **b)** 1125 cm^2
- **3.a)** 64 cm **b)** 145 cm
- **4.** For example: The height of the trapezoid is about 10 cm.
- **5.a)** $P = 37.2 \text{ cm}, A = 52.28 \text{ cm}^2$
- **b)** $P = 48 \text{ m}, A = 155.52 \text{ m}^2$
- **6.a)** 1105.5 m² **b)** \$10 756.50

Unit 6 Practice Test, page 241

1.a) $A = 63 \text{ cm}^2$, P = 34 cm **b)** $A = 9 \text{ cm}^2$, P = 25.5 cm **c)** $A = 8.1 \text{ cm}^2$, P = 13.9 cm **d)** $A = 27 \text{ cm}^2$, P = 26 cm **2.a)** Area is doubled. **b)** Area is halved. **c)** Area stays the same. **4.a)** 25.5 cm² **b)** 36 cm

Unit 7 Geometry, page 244

Skills You'll Need, page 246

- **3.** Yes.
- **4.** No. An equilateral triangle always has three equal angles of 60°. A right triangle has one angle of 90°.
- **7.a)** On the vertical axis **b)** On the horizontal axis

7.1 Classifying Figures, page 252

- **1.a)** For example: A polygon has sides that intersect only at the vertices. The sides of this figure don't only intersect at the vertices.
 - **b)** For example: A polygon is a closed figure. This is not a closed figure.
- **2.a)** i) No. Not all the angles are equal.
 - ii) Yes. All the sides and all the angles are equal.
 - iii) No. Not all the sides are equal.
 - b) i) All of the polygons in part a have line symmetry.