1.3 Algebraic Expressions

Focus Use a variable to represent a set of numbers.

We can use symbols to represent a pattern.

Explore

Tehya won some money in a competition.
She has two choices as to how she gets paid.
Choice 1: $\$ 20$ per week for one year
Choice 2: $\$ 400$ cash now plus $\$ 12$ per week for one year
Which method would pay Tehya more money?
For what reasons might Tehya choose each method of payment?

Reflect \& Share

Work with another pair of classmates.
For each choice, describe a rule you can use to calculate the total money Tehya has received at any time during the year.

Connect

We can use a variable to represent a number in an expression.
For example, we know there are 100 cm in 1 m .

We can write $1 \times 100 \mathrm{~cm}$ in 1 m .
There are $2 \times 100 \mathrm{~cm}$ in 2 m .
There are $3 \times 100 \mathrm{~cm}$ in 3 m .

Recall that a variable is a letter, such as n, that represents a quantity that can vary.

To write an expression for the number of centimetres in any number of metres, we say there are $n \times 100 \mathrm{~cm}$ in n metres.
n is a variable.
n represents any number we choose.

We can use any letter, such as n or x, as a variable.
The expression $n \times 100$ is written as $100 n$. $100 n$ is an algebraic expression.

Variables are written in italics so they are not confused with units of measurement.

Here are some other algebraic expressions, and their meanings.
In each case, n represents the number.

- Three more than a number: $3+n$ or $n+3$
- Seven times a number: 7n
- Eight less than a number: $n-8$
- A number divided by $20: \frac{n}{20}$

When we replace a variable with a number in an algebraic expression, we evaluate the expression. That is, we find the value of the expression for a particular value of the variable.

Example

Write each algebraic expression in words.
Then evaluate for the value of the variable given.
a) $5 k+2$ for $k=3$
b) $32-\frac{x}{4}$ for $x=20$

A Solution

a) $5 k+2$ means 5 times a number, then add 2 .

Replace k with 3 in the expression $5 k+2$.
Then use the order of operations.

$$
\begin{aligned}
5 k+2 & =5 \times 3+2 & & \text { Multiply first. } \\
& =15+2 & & \text { Add. } \\
& =17 & &
\end{aligned}
$$

b) $32-\frac{x}{4}$ means 32 minus a number divided by 4 .

Replace x with 20 in the expression $32-\frac{x}{4}$.

```
\(\frac{x}{4}\) means \(x \div 4\).
```

Then use the order of operations.

$$
\begin{aligned}
32-\frac{x}{4} & =32-\frac{20}{4} & & \text { Divide first. } \\
& =32-5 & & \text { Subtract. } \\
& =27 & &
\end{aligned}
$$

In the expression $5 k+2$,

- 5 is the numerical coefficient of the variable.
- 2 is the constant term.
- k is the variable.

The variable represents any number in a set of numbers.

Practice

1. Identify the numerical coefficient, the variable, and the constant term in each algebraic expression.
a) $3 x+2$
b) $5 n$
c) $w+3$
d) $2 p+4$
2. An algebraic expression has variable p, numerical coefficient 7 , and constant term 9.
Write as many different algebraic expressions as you can that fit this description.
3. Write an algebraic expression for each phrase.
a) six more than a number
b) a number multiplied by eight
c) a number decreased by six
d) a number divided by four
4. A person earns $\$ 4$ for each hour he spends baby-sitting.
a) Find the money earned for each time.
i) 5 h
ii) 8 h
b) Write an algebraic expression you could use to find the money earned in t hours.
5. Write an algebraic expression for each sentence.

a) Double a number and add three.
b) Subtract five from a number, then multiply by two.
c) Divide a number by seven, then add six.
d) A number is subtracted from twenty-eight.
e) Twenty-eight is subtracted from a number.
6. a) Write an algebraic expression for each phrase.
i) four more than a number
ii) a number added to four
iii) four less than a number
iv) a number subtracted from four
b) How are the expressions in part a alike?

How are they different?
7. Evaluate each expression by replacing x with 4 .
a) $x+5$
b) $3 x$
c) $2 x-1$
d) $\frac{x}{2}$
e) $3 x+1$
f) $20-2 x$
8. Evaluate each expression by replacing z with 7 .
a) $z+12$
b) $10-z$
c) $5 z$
d) $3 z-3$
e) $35-2 z$
f) $3+\frac{z}{7}$
9. Assessment Focus Jason works at a local fish and chips restaurant.
He earns $\$ 7 / \mathrm{h}$ during the week, and $\$ 9 / \mathrm{h}$ on the weekend.
a) Jason works 8 h during the week and 12 h on the weekend.
Write an expression for his earnings.
b) Jason works x hours during the week and
 5 h on the weekend.
Write an expression for his earnings.
c) Jason needs $\$ 115$ to buy sports equipment.

He worked 5 h on the weekend.
How many hours does Jason have to work during the week to have the money he needs?
10. Take It Further A value of n is substituted in each expression to get the number in the box.
Find each value of n.
a) $5 n$
30
b) $3 n-1$
11
c) $4 n+7 \quad 15$
d) $5 n-4 \quad 11$
e) $4+6 n$
40
f) $\frac{n}{8}$5

Reflect

Explain why it is important to use the order of operations when evaluating an algebraic expression.
Use an example in your explanation.

