UNIT

Ratio and Rate

The animal kingdom provides much interesting information. We use information to make comparisons. What comparisons can you make from these facts?

A sea otter eats about $\frac{1}{3}$ of its body mass a day.

A Great Dane can eat up to 4 kg of food a day.

A cheetah can reach a top speed of 110 km/h.

A human can run at $18 \mathrm{~km} / \mathrm{h}$.
The heart of a blue whale is the size of a small car.

One in 5000 North Atlantic lobsters is born bright blue.

- Find equivalent ratios.
- Compare ratios and use them to solve problems.
- Understand what a rate is.
- Find unit rates.
- Compare rates and use them to solve problems.

Why It's

Important

You use ratios and rates to compare numbers and quantities; and to compare prices when you shop.

Key Words

- ratio
- part-to-whole ratio
- part-to-part ratio
- terms of a ratio
- equivalent ratios
- simplest form
- rate
- unit rate
- average speed

Skills You'll Need

Greatest Common Factor

Recall that the greatest common factor (GCF) of a set of numbers is the greatest number that will divide exactly into the given numbers.
For example, 6 is the greatest common factor of 18 and 24.

Example 1

Find the GCF of 24 and 30.

Solution

Draw a factor tree for each number.

Circle the numbers that appear in the bottom row of both factor trees.
2 and 3 are common to both factor trees.
The GCF of 24 and 30 is $2 \times 3=6$.

Check

1. Find the GCF of the numbers in each set.
a) 30,75
b) 27,63
c) 42,56
d) $12,18,42$

Lowest Common Multiple

Recall that the lowest common multiple (LCM) of a set of numbers is the least number that is a multiple of each number in the set. This also means that each number in the set is a factor of the lowest common multiple.

Example 2

Find the LCM of 18 and 32.

Solution

Draw a factor tree for each number.

Circle the numbers that appear in the bottom row of both factor trees.
Multiply the numbers not circled and one each of the circled numbers:
$3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2=288$
The LCM of 18 and 32 is 288 .

Check

2. Write the first 6 multiples of each number.
a) 4
b) 7
c) 9
d) 12
3. Find the LCM of the numbers in each pair.
a) 9,12
b) 14,35
c) 16,40
4. Find the LCM of the numbers in each set.
a) 36,45
b) 3, 4, 6
c) $12,15,20$

Converting among Metric Units

$$
\begin{array}{ll}
100 \mathrm{~cm}=1 \mathrm{~m} & 1000 \mathrm{~m}=1 \mathrm{~km} \\
1000 \mathrm{~g}=1 \mathrm{~kg} & 1000 \mathrm{~mL}=1 \mathrm{~L}
\end{array}
$$

- To convert centimetres to metres, divide by 100 .
- To convert:

Divide to convert to a larger unit.

- To convert metres to centimetres, multiply by 100 .
- To convert: kilometres to metres kilograms to grams litres to millilitres

Multiply by 1000.
Multiply to convert to a smaller unit.

Example 3

Convert.
a) 650 cm to metres
b) 82 km to metres
c) 2.4 kg to grams
d) 2840 mL to litres

Solution

a) $\begin{aligned} 650 \mathrm{~cm} & =\frac{650}{100} \mathrm{~m} \\ & =6.5 \mathrm{~m}\end{aligned}$
b) $82 \mathrm{~km}=82 \times 1000 \mathrm{~m}$
$=6.5 \mathrm{~m}$
$=82000 \mathrm{~m}$
c) $2.4 \mathrm{~kg}=2.4 \times 1000 \mathrm{~g}$
d) $2840 \mathrm{~mL}=\frac{2840}{1000} \mathrm{~L}$
$=2400 \mathrm{~g}$

$$
=2.84 \mathrm{~L}
$$

Check

5. Convert.
a) 1280 cm to metres
b) 680 m to kilometres
c) 2454 g to kilograms
d) 1987 mL to litres
e) 8.2 m to centimetres
f) 1.25 km to metres
g) 0.45 kg to grams
h) 2.3 L to millilitres
